Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 1.4.1.21 extracted from

  • Li, Y.; Ogola, H.J.; Sawa, Y.
    L-aspartate dehydrogenase: features and applications (2012), Appl. Microbiol. Biotechnol., 93, 503-516.
    View publication on PubMed

Application

Application Comment Organism
analysis usage of AspDH in the quantitative measurement of amino acids, 2-oxo acids, and ammonia or urea in studies involving clinical settings, bioprocess control, and nutrition Klebsiella pneumoniae
analysis usage of AspDH in the quantitative measurement of amino acids, 2-oxo acids, and ammonia or urea in studies involving clinical settings, bioprocess control, and nutrition Cupriavidus necator
analysis usage of AspDH in the quantitative measurement of amino acids, 2-oxo acids, and ammonia or urea in studies involving clinical settings, bioprocess control, and nutrition Archaeoglobus fulgidus
analysis usage of AspDH in the quantitative measurement of amino acids, 2-oxo acids, and ammonia or urea in studies involving clinical settings, bioprocess control, and nutrition Thermotoga maritima
analysis usage of AspDH in the quantitative measurement of amino acids, 2-oxo acids, and ammonia or urea in studies involving clinical settings, bioprocess control, and nutrition Pseudomonas aeruginosa
synthesis potential application of AspDH for cost-effective and efficient L-Asp production via both fermentative and enzymatic systems. The ability to catalyze stereospecific reactions has also stimulated research interest in amino acid dehydrogenases as biocatalysts to produce synthons for pharmaceutical and food industries, e.g., enantiomerically pure non-natural amino acids as drug precursors Klebsiella pneumoniae
synthesis potential application of AspDH for cost-effective and efficient L-Asp production via both fermentative and enzymatic systems. The ability to catalyze stereospecific reactions has also stimulated research interest in amino acid dehydrogenases as biocatalysts to produce synthons for pharmaceutical and food industries, e.g., enantiomerically pure non-natural amino acids as drug precursors Cupriavidus necator
synthesis potential application of AspDH for cost-effective and efficient L-Asp production via both fermentative and enzymatic systems. The ability to catalyze stereospecific reactions has also stimulated research interest in amino acid dehydrogenases as biocatalysts to produce synthons for pharmaceutical and food industries, e.g., enantiomerically pure non-natural amino acids as drug precursors Archaeoglobus fulgidus
synthesis potential application of AspDH for cost-effective and efficient L-Asp production via both fermentative and enzymatic systems. The ability to catalyze stereospecific reactions has also stimulated research interest in amino acid dehydrogenases as biocatalysts to produce synthons for pharmaceutical and food industries, e.g., enantiomerically pure non-natural amino acids as drug precursors Thermotoga maritima
synthesis potential application of AspDH for cost-effective and efficient L-Asp production via both fermentative and enzymatic systems. The ability to catalyze stereospecific reactions has also stimulated research interest in amino acid dehydrogenases as biocatalysts to produce synthons for pharmaceutical and food industries, e.g., enantiomerically pure non-natural amino acids as drug precursors Pseudomonas aeruginosa

Cloned(Commentary)

Cloned (Comment) Organism
gene KPN_03362, DNA and amino acid sequence determination and analysis Klebsiella pneumoniae
gene nadX, phylogenetic analysis Pseudomonas aeruginosa
gene nadX, the gene forms an operon with the NAD biosynthesis genes nadA and nadC Thermotoga maritima

Protein Variants

Protein Variants Comment Organism
additional information L-Asp production system consisting of PaeAspDH, Bacillus subtilis malate dehydrogenase and Escherichia coli fumarase, achieving a high level of L-Asp production from fumarate in fed-batch process with a molar conversion yield of 89.4% in LB medium supplemented with fumarate, and 100 mM NH4Cl, overview, or in the same production system with glucose M9 minimal medium containing 50 mM glucose and 80 mM urea as carbon and nitrogen source, respectively Pseudomonas aeruginosa

KM Value [mM]

KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
0.014
-
NADH pH not specified in the publication, 37°C Cupriavidus necator
0.045
-
NADH pH 8.2, 37°C Pseudomonas aeruginosa
0.061
-
NADH pH not specified in the publication, 50°C Archaeoglobus fulgidus
0.067
-
L-aspartate pH and temperature not specified in the publication, with NAD+ Thermotoga maritima
0.11
-
NAD+ pH 10.2, 37°C Cupriavidus necator
0.19
-
L-aspartate pH 10.2, 37°C, with NAD+ Cupriavidus necator
0.25
-
NAD+ pH and temperature not specified in the publication Thermotoga maritima
0.32
-
NADP+ pH 10.2, 37°C Cupriavidus necator
0.47
-
NAD+ pH 9.8, 37°C Pseudomonas aeruginosa
0.47
-
NADP+ pH 9.8, 37°C Pseudomonas aeruginosa
0.72
-
NADP+ pH and temperature not specified in the publication Thermotoga maritima
0.97
-
NAD+ pH 11.6, 50°C Archaeoglobus fulgidus
1.2
-
L-aspartate pH and temperature not specified in the publication, with NADP+ Thermotoga maritima
1.2
-
oxaloacetate pH not specified in the publication, 37°C, with NADH Cupriavidus necator
2.12
-
oxaloacetate pH 8.2, 37°C, with NADH Pseudomonas aeruginosa
2.3
-
L-aspartate pH 11.6, 50°C, with NAD+ Archaeoglobus fulgidus
2.32
-
oxaloacetate pH not specified in the publication, 50°C, with NADH Archaeoglobus fulgidus
4.3
-
L-aspartate pH 10.2, 37°C, with NADP+ Cupriavidus necator
4.74
-
L-aspartate pH 9.8, 37°C, with NADP+ Pseudomonas aeruginosa
4.87
-
L-aspartate pH 9.8, 37°C, with NAD+ Pseudomonas aeruginosa
7.43
-
NADP+ pH 11.6, 50°C Archaeoglobus fulgidus
10.1
-
NH3 pH 8.2, 37°C, with NADH Pseudomonas aeruginosa
14.9
-
NH3 pH not specified in the publication, 50°C, with NADH Archaeoglobus fulgidus
26.6
-
L-aspartate pH 11.6, 50°C, with NADP+ Archaeoglobus fulgidus
167
-
NH3 pH not specified in the publication, 37°C, with NADH Cupriavidus necator

Molecular Weight [Da]

Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
26000
-
2 * 26000 Archaeoglobus fulgidus
27000
-
2 * 27000 Thermotoga maritima
27000
-
2 * 27000, about, sequence calculation Klebsiella pneumoniae
28000
-
2 * 28000 Cupriavidus necator
28000
-
2 * 28000 Pseudomonas aeruginosa

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
L-aspartate + H2O + NAD(P)+ Klebsiella pneumoniae
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+ Cupriavidus necator
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+ Archaeoglobus fulgidus
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+ Thermotoga maritima
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+ Pseudomonas aeruginosa
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+ Klebsiella pneumoniae MGH 78578
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+ Cupriavidus necator JMP 134-1
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+ Klebsiella pneumoniae IFO 13541
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r

Organism

Organism UniProt Comment Textmining
Archaeoglobus fulgidus
-
-
-
Cupriavidus necator
-
-
-
Cupriavidus necator JMP 134-1
-
-
-
Klebsiella pneumoniae
-
-
-
Klebsiella pneumoniae
-
subsp. pneumoniae, gene KPN_03362
-
Klebsiella pneumoniae IFO 13541
-
-
-
Klebsiella pneumoniae MGH 78578
-
subsp. pneumoniae, gene KPN_03362
-
Pseudomonas aeruginosa Q9HYA4 gene nadX
-
Thermotoga maritima
-
gene nadX
-

Specific Activity [micromol/min/mg]

Specific Activity Minimum [µmol/min/mg] Specific Activity Maximum [µmol/min/mg] Comment Organism
0.045
-
30°C, pH not specified in the publication Klebsiella pneumoniae
4.6
-
50°C, pH 11.6 Archaeoglobus fulgidus
127
-
pH 9.8, 37°C Pseudomonas aeruginosa
137
-
37°C, pH 10.2 Cupriavidus necator

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
L-aspartate + H2O + NAD(P)+
-
Klebsiella pneumoniae oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+
-
Cupriavidus necator oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+
-
Archaeoglobus fulgidus oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+
-
Thermotoga maritima oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+
-
Pseudomonas aeruginosa oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+
-
Klebsiella pneumoniae MGH 78578 oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+
-
Cupriavidus necator JMP 134-1 oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD(P)+
-
Klebsiella pneumoniae IFO 13541 oxaloacetate + NH3 + NAD(P)H + H+
-
r
L-aspartate + H2O + NAD+
-
Klebsiella pneumoniae oxaloacetate + NH3 + NADH + H+
-
r
L-aspartate + H2O + NAD+
-
Cupriavidus necator oxaloacetate + NH3 + NADH + H+
-
r
L-aspartate + H2O + NAD+
-
Archaeoglobus fulgidus oxaloacetate + NH3 + NADH + H+
-
r
L-aspartate + H2O + NAD+
-
Thermotoga maritima oxaloacetate + NH3 + NADH + H+
-
r
L-aspartate + H2O + NAD+
-
Pseudomonas aeruginosa oxaloacetate + NH3 + NADH + H+
-
r
L-aspartate + H2O + NAD+
-
Klebsiella pneumoniae MGH 78578 oxaloacetate + NH3 + NADH + H+
-
r
L-aspartate + H2O + NAD+
-
Cupriavidus necator JMP 134-1 oxaloacetate + NH3 + NADH + H+
-
r
L-aspartate + H2O + NAD+
-
Klebsiella pneumoniae IFO 13541 oxaloacetate + NH3 + NADH + H+
-
r
L-aspartate + H2O + NADP+
-
Klebsiella pneumoniae oxaloacetate + NH3 + NADPH + H+
-
r
L-aspartate + H2O + NADP+
-
Cupriavidus necator oxaloacetate + NH3 + NADPH + H+
-
r
L-aspartate + H2O + NADP+
-
Archaeoglobus fulgidus oxaloacetate + NH3 + NADPH + H+
-
r
L-aspartate + H2O + NADP+
-
Thermotoga maritima oxaloacetate + NH3 + NADPH + H+
-
r
L-aspartate + H2O + NADP+
-
Pseudomonas aeruginosa oxaloacetate + NH3 + NADPH + H+
-
r
L-aspartate + H2O + NADP+
-
Klebsiella pneumoniae MGH 78578 oxaloacetate + NH3 + NADPH + H+
-
r
L-aspartate + H2O + NADP+
-
Cupriavidus necator JMP 134-1 oxaloacetate + NH3 + NADPH + H+
-
r
L-aspartate + H2O + NADP+
-
Klebsiella pneumoniae IFO 13541 oxaloacetate + NH3 + NADPH + H+
-
r
additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Klebsiella pneumoniae ?
-
?
additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Cupriavidus necator ?
-
?
additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Archaeoglobus fulgidus ?
-
?
additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Thermotoga maritima ?
-
?
additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Pseudomonas aeruginosa ?
-
?
additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Klebsiella pneumoniae MGH 78578 ?
-
?
additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Cupriavidus necator JMP 134-1 ?
-
?
additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Klebsiella pneumoniae IFO 13541 ?
-
?
oxaloacetate + NH3 + NADH + H+
-
Klebsiella pneumoniae L-aspartate + H2O + NAD+
-
r
oxaloacetate + NH3 + NADH + H+
-
Cupriavidus necator L-aspartate + H2O + NAD+
-
r
oxaloacetate + NH3 + NADH + H+
-
Archaeoglobus fulgidus L-aspartate + H2O + NAD+
-
r
oxaloacetate + NH3 + NADH + H+
-
Thermotoga maritima L-aspartate + H2O + NAD+
-
r
oxaloacetate + NH3 + NADH + H+
-
Pseudomonas aeruginosa L-aspartate + H2O + NAD+
-
r
oxaloacetate + NH3 + NADH + H+
-
Klebsiella pneumoniae MGH 78578 L-aspartate + H2O + NAD+
-
r
oxaloacetate + NH3 + NADH + H+
-
Cupriavidus necator JMP 134-1 L-aspartate + H2O + NAD+
-
r
oxaloacetate + NH3 + NADH + H+
-
Klebsiella pneumoniae IFO 13541 L-aspartate + H2O + NAD+
-
r
oxaloacetate + NH3 + NADPH + H+
-
Klebsiella pneumoniae L-aspartate + H2O + NADP+
-
r
oxaloacetate + NH3 + NADPH + H+
-
Cupriavidus necator L-aspartate + H2O + NADP+
-
r
oxaloacetate + NH3 + NADPH + H+
-
Archaeoglobus fulgidus L-aspartate + H2O + NADP+
-
r
oxaloacetate + NH3 + NADPH + H+
-
Thermotoga maritima L-aspartate + H2O + NADP+
-
r
oxaloacetate + NH3 + NADPH + H+
-
Pseudomonas aeruginosa L-aspartate + H2O + NADP+
-
r

Subunits

Subunits Comment Organism
homodimer 2 * 28000 Cupriavidus necator
homodimer 2 * 28000 Pseudomonas aeruginosa
homodimer 2 * 26000 Archaeoglobus fulgidus
homodimer 2 * 27000 Thermotoga maritima
homodimer 2 * 27000, about, sequence calculation Klebsiella pneumoniae
homodimer three-dimensional structure comparisons, overview Klebsiella pneumoniae
More three-dimensional structure comparisons, overview Klebsiella pneumoniae
More three-dimensional structure comparisons, overview Cupriavidus necator
More three-dimensional structure comparisons, overview Archaeoglobus fulgidus
More three-dimensional structure comparisons, overview Thermotoga maritima
More three-dimensional structure comparisons, overview Pseudomonas aeruginosa

Synonyms

Synonyms Comment Organism
L-aspartate dehydrogenase
-
Klebsiella pneumoniae
L-aspartate dehydrogenase
-
Cupriavidus necator
L-aspartate dehydrogenase
-
Archaeoglobus fulgidus
L-aspartate dehydrogenase
-
Thermotoga maritima
L-aspartate dehydrogenase
-
Pseudomonas aeruginosa
L-aspDH
-
Klebsiella pneumoniae
L-aspDH
-
Cupriavidus necator
L-aspDH
-
Archaeoglobus fulgidus
L-aspDH
-
Thermotoga maritima
L-aspDH
-
Pseudomonas aeruginosa

Temperature Optimum [°C]

Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
50
-
-
Cupriavidus necator
50
-
-
Pseudomonas aeruginosa
70
-
above Thermotoga maritima
80
-
-
Archaeoglobus fulgidus

Temperature Stability [°C]

Temperature Stability Minimum [°C] Temperature Stability Maximum [°C] Comment Organism
additional information
-
improving the thermostability of mesophilic AspDHs by the addition of 0.4 M NaCl or 30% glycerol Pseudomonas aeruginosa
additional information
-
thermostability of AfuAspDH is mainly ascribed to the intersubunit ion and aromatic pair interactions in the enzyme Archaeoglobus fulgidus
additional information
-
thermostability of TmaAspDH is mainly ascribed to the intersubunit ion and aromatic pair interactions in the enzyme Thermotoga maritima
48
-
20 min, Tm of purified enzyme Pseudomonas aeruginosa
49
-
20 min, Tm of purified enzyme Cupriavidus necator
80
-
above, Tm of purified enzyme Archaeoglobus fulgidus
80
-
above, Tm of purified enzyme Thermotoga maritima
100
-
half-life is 10 min Archaeoglobus fulgidus
100
-
half-life is 10.7 min Thermotoga maritima

pH Optimum

pH Optimum Minimum pH Optimum Maximum Comment Organism
9.8
-
deamination Pseudomonas aeruginosa
10.2
-
deamination Cupriavidus necator
11.6
-
deamination Archaeoglobus fulgidus

pH Stability

pH Stability pH Stability Maximum Comment Organism
4.5 11.5 stable Archaeoglobus fulgidus
5.8 6.6 stable Pseudomonas aeruginosa
5.8 7.2 stable Cupriavidus necator

Cofactor

Cofactor Comment Organism Structure
additional information L-AspDH can utilize both NAD+ and NADP+ as a coenzyme, albeit at different efficiencies Archaeoglobus fulgidus
additional information L-AspDH can utilize both NAD+ and NADP+ as a coenzyme, albeit at different efficiencies Thermotoga maritima
additional information L-AspDH can utilize both NAD+ and NADP+ as a coenzyme, albeit at different efficiencies, approximately 8fold higher Km value for NADP+ over NAD+ Cupriavidus necator
additional information L-AspDH can utilize both NAD+ and NADP+ as a coenzyme, albeit at different efficiencies, similar Km values for NADP+ and NAD+ Pseudomonas aeruginosa
additional information L-AspDH can utilize both NAD+ and NADP+ as a coenzyme, albeit at different efficiencies, the L-AspDH of Klebsiella pneumoniae shows a higher specificity for NADP+ but inactive with NAD+ Klebsiella pneumoniae
NAD+
-
Klebsiella pneumoniae
NAD+
-
Cupriavidus necator
NAD+
-
Archaeoglobus fulgidus
NAD+
-
Thermotoga maritima
NAD+
-
Pseudomonas aeruginosa
NADH
-
Klebsiella pneumoniae
NADH
-
Cupriavidus necator
NADH
-
Archaeoglobus fulgidus
NADH
-
Thermotoga maritima
NADH
-
Pseudomonas aeruginosa
NADP+
-
Klebsiella pneumoniae
NADP+
-
Cupriavidus necator
NADP+
-
Archaeoglobus fulgidus
NADP+
-
Thermotoga maritima
NADP+
-
Pseudomonas aeruginosa
NADPH
-
Klebsiella pneumoniae
NADPH
-
Cupriavidus necator
NADPH
-
Archaeoglobus fulgidus
NADPH
-
Thermotoga maritima
NADPH
-
Pseudomonas aeruginosa

General Information

General Information Comment Organism
evolution L-AspDH members and other putative homologs share surprisingly low homology, below 10%, with the other amino acid dehydrogenases Klebsiella pneumoniae
evolution L-AspDH members and other putative homologs share surprisingly low homology, below 10%, with the other amino acid dehydrogenases Cupriavidus necator
evolution L-AspDH members and other putative homologs share surprisingly low homology, below 10%, with the other amino acid dehydrogenases Archaeoglobus fulgidus
evolution L-AspDH members and other putative homologs share surprisingly low homology, below 10%, with the other amino acid dehydrogenases Thermotoga maritima
evolution L-AspDH members and other putative homologs share surprisingly low homology, below 10%, with the other amino acid dehydrogenases Pseudomonas aeruginosa
metabolism proposed pathways of L-Asp metabolism, overview Cupriavidus necator
additional information three-dimensional structure comparisons, overview Klebsiella pneumoniae
additional information three-dimensional structure comparisons, overview Cupriavidus necator
additional information three-dimensional structure comparisons, overview Archaeoglobus fulgidus
additional information three-dimensional structure comparisons, overview Thermotoga maritima
additional information three-dimensional structure comparisons, overview Pseudomonas aeruginosa
physiological function involvement of L-AspDH in NAD biosynthesis, overview Klebsiella pneumoniae
physiological function involvement of L-AspDH in NAD biosynthesis, overview Cupriavidus necator
physiological function involvement of L-AspDH in NAD biosynthesis, overview Archaeoglobus fulgidus
physiological function involvement of L-AspDH in NAD biosynthesis, overview Thermotoga maritima
physiological function involvement of L-AspDH in NAD biosynthesis, overview Pseudomonas aeruginosa